Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Multidecadal Variations in the Tropical Western Pacific Driven by Externally‐Forced AMV‐Like ChangesAbstract Multidecadal sea surface temperature (SST) variations in the tropical western Pacific (TWP) have been attributed to nonlinear external forcing and remote influences from the Atlantic Multidecadal Variability (AMV). However, the AMV resulted from both internal variability (IV) and external forcing. Thus, the origins of the TWP SST variations are not well understood. By analyzing observations and model simulations, we show that more than half of the decadal to multidecadal SST variations in TWP during 1920–2020 resulted from external forcing with the forced component correlated with AMV, while the internal component is unrelated to AMV. Furthermore, about 43%–49% of the forced AMV‐like SST variations in TWP result from remote influences of the forced AMV in the Atlantic via atmospheric teleconnection over the North Pacific, with the rest from other remote or local processes.more » « less
- 
            Abstract Recent satellite and in-situ measurements show that forests can influence regional and global cloud cover through biophysical processes. However, forest’s possible local and non-local impacts on clouds remain unclear. By analyzing the model simulations from the Coupled Model Intercomparison Project Phase 6, here we show that deforestation-induced cloud cover changes have a strong latitudinal dependence, with decreased cloudiness in the tropics but increased cloudiness in the temperate and boreal regions. We further disentangle the local and non-local effects in influencing the cloudiness changes in model simulations. Results show that deforestation leads to a local cloud reduction in the tropics and a non-local cloud enhancement in the temperate and boreal regions. We demonstrate that the relationship between changes in cloud cover and deforestation would be misinterpreted without considering the non-local signals. Furthermore, our modeling results are inconsistent with recent observational studies, with enhanced clouds in model simulations but reduced clouds in observations in the temperate and boreal regions. Further efforts to explore the non-local effect and to reduce the model uncertainty could help advance our understanding of the biophysical effects of deforestation.more » « less
- 
            Abstract The Atlantic multidecadal variability (AMV), a dominant mode of multidecadal variations in North Atlantic sea surface temperatures (NASST), has major impacts on global climate. Given that both internal variability and external forcing have contributed to the historical AMV, how future anthropogenic forcing may regulate the AMV is of concern but remains unclear. By analyzing observations and a large ensemble of model simulations [i.e., the Max Planck Institute Grand Ensemble (MPI-GE)], the internally generated (AMV IV ) and externally forced (AMV EX ) components of the AMV and their climatic impacts during the twenty-first century are examined. Consistent with previous findings, the AMV IV would weaken with future warming by 11%–17% in its amplitude by the end of the twenty-first century, along with reduced warming anomaly over the midlatitude North Atlantic under future warming during the positive AMV IV phases. In contrast, the AMV EX is projected to strengthen with reduced frequency under future warming. Furthermore, future AMV IV -related temperature variations would weaken over Eurasia and North Africa but strengthen over the United States, whereas AMV IV -related precipitation over parts of North America and Eurasia would weaken in a warmer climate. The AMV EX ’s impact on global precipitation would also weaken. The results provide new evidence that future anthropogenic forcing (i.e., nonlinear changes in GHGs and aerosols) under different scenarios can generate distinct multidecadal variations and influence the internally generated AMV, and that multidecadal changes in anthropogenic forcing are important for future AMV.more » « less
- 
            Abstract In the Congo Basin, a drying trend in the April–May–June rains prevailed between 1979 and 2014, accompanied by a decline in forest productivity. This article examines the subsequent years, in order to determine whether rainfall conditions have improved and to examine meteorological factors governing conditions in those years. It is shown that a wetter period, comparable to that of 1979–1993, spanned the years 2016–2020. However, the meteorological factors responsible for the wetter conditions appear to be significantly different from those related to the earlier wet period. The wetter conditions of 1979–1993 were associated with changes in the tropical Walker circulation, in moisture flux and flux divergence, and in Pacific sea-surface temperatures (SST), namely a warmer central and eastern Pacific and a cooler western Pacific, compared to the dry phase in 2000–2014. This resulted in a lower-than-average trans-Pacific SST gradient. In contrast, SSTs were almost ubiquitously higher in the 2016–2020 period than in either prior period. However, there was some reduction in the trans-Pacific gradient. The Walker circulation and moisture flux/flux divergence were not factors in this episode. The major factors provoking the return to wetter years appear to be an increase in convective available potential energy and in total column water vapor. This could be related to the general warming of the oceans and land.more » « less
- 
            Aerosol-forced multidecadal variations across all ocean basins in models and observations since 1920Earth’s climate fluctuates considerably on decadal-multidecadal time scales, often causing large damages to our society and environment. These fluctuations usually result from internal dynamics, and many studies have linked them to internal climate modes in the North Atlantic and Pacific oceans. Here, we show that variations in volcanic and anthropogenic aerosols have caused in-phase, multidecadal SST variations since 1920 across all ocean basins. These forced variations resemble the Atlantic Multidecadal Oscillation (AMO) in time. Unlike the North Atlantic, where indirect and direct aerosol effects on surface solar radiation drive the multidecadal SST variations, over the tropical central and western Pacific atmospheric circulation response to aerosol forcing plays an important role, whereas aerosol-induced radiation change is small. Our new finding implies that AMO-like climate variations in Eurasia, North America, and other regions may be partly caused by the aerosol forcing, rather than being originated from the North Atlantic SST variations as previously thought.more » « less
- 
            Abstract On decadal time scales, Indian Ocean sea surface temperatures (SSTs) exhibit coherent basin‐wide changes, but their origins are not well understood. Here we analyze observations and model simulations from Coupled Model Intercomparison Project Phase 6 and Community Earth System Model Version 1 to quantify the roles of external forcing and internal climate variability in causing Indian Ocean decadal SST variations. Results show that both external forcing and internal variability since 1920 have contributed to the observed decadal variations in linearly detrended Indian Ocean SSTs, and they exhibit an out‐of‐phase relationship since the 1950s. The internally‐generated variations arise from remote influences from the tropical Pacific and possible contributions from internal local processes, while the influence from the Atlantic Multidecadal Oscillation is opposite to that of the Interdecadal Pacific Oscillation. Decadal SST changes caused by nonlinear variations in greenhouse gases and aerosols are roughly out‐of‐phase with the internal variability, thus dampening observed SST variations since the 1950s.more » « less
- 
            Abstract The 2022 heatwave in China featured record‐shattering high temperatures, raising questions about its origin and possible link to global warming. Here we show that the maximum temperature anomalies over Central China reached 13.1°C in the summer of 2022, which is ∼4.2σ above the 1981–2010 mean with a return period of tens of thousands of years. Our results suggested that the persistent high‐pressure anomaly and associated extreme heatwave likely resulted mainly from internal variability, although anthropogenic warming has increased the probability of such extreme heatwaves. We also estimate that the 2022‐like heatwave becomes six to seven times more likely under persistent high‐pressure conditions when compared to stochastic circulation states. Due to a shift toward warmer mean temperatures and a flattening of the probability distribution function, such rare extreme heatwaves are projected to become much more common at a global warming level of 4°C, occurring once about every 8.5 years.more » « less
- 
            Abstract Recent summer surface air temperature (SAT) variations over Central East Asia (CEA) have been influenced by greenhouse gas and aerosol forcing since 1960. But how CEA SAT responds to contrasting changes in Asian, and European and North American aerosol sources remains unclear. By analyzing observations and model simulations, here we show that aerosol‐forced summer SAT changes over CEA since 1960 come mostly from the effects of aerosols outside Asia, with relatively small influences from Asian aerosols. Unlike Europe, where direct and indirect aerosol effects on surface solar radiation drive the SAT long‐term trend and decadal variations, over CEA atmospheric circulation response to aerosols outside Asia plays an important role. Aerosol‐forced anomalous low‐level low pressure in mid‐latitude Eurasia may influence the SAT anomalies downstream over mid‐latitude Asia, including a warm anomaly around CEA. The results suggest that caution is needed in attributing SAT changes around CEA to anthropogenic aerosols from Asia.more » « less
- 
            Abstract Using observational rainfall datasets, we identify a positive correlation between precipitation over Central Equatorial Africa (CEA) and the Indian Ocean Dipole (IOD) during September‐December (SOND) for the period 1981–2019. Rainfall amount significantly increases during positive IOD events. The enhancement in precipitation is primarily attributed to increased rainfall frequency and reaches the maximum in October. IOD impacts rainfall via modifying the Walker circulation over the tropical Indian Ocean and moisture in the middle troposphere over CEA. The Madden‐Julian Oscillation (MJO) activity covaries with IOD to modulate the African Easterly Jet, which is critical to convection development over CEA. SOND rainfall has increased for the last two decades, which is concurrent with increases in both the IOD index and the correlation between IOD and rainfall. The IOD‐congruent rainfall changes potentially account for much of rainfall trends in southern and eastern CEA.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
